Useful Alternatives to 99mTc-Labeled Radiopharmaceuticals: The Clinical Point of View

C. Rossetti (Milan)

Technetium 99mTc (Tc99m) is widely used in clinical settings for routine diagnostic purposes. The favorable emission energy (140KeV) and relative short half life, made the well recognized success of this isotope in Nuclear Medicine. Recent shortage of Molybdenum/Technetium raised the issue of possible new strategies to reduce the need of this product. Alternative can be reached with two approaches: Acquisition and post processing tools aimed to reduce the need of the radiotracers labeled with Tc99m.

Alternative radiopharmaceuticals

The first approach is based on the demonstration that the use of specific modalities such as high sensitivity gamma cameras and reconstruction iterative programs do not modify the diagnostic accuracy when compared to standard procedures, allowing lower doses of radiopharmaceuticals (Tc99m labeled). This is a dosimetric benefit itself and minimize the effect of Molybdenum shortage.

The use of alternative radiopharmaceuticals has to be validated on basis of clinical equivalence and cost effects. Careful analysis is necessary to avoid misuse without clinical benefit. In particular in Nuclear cardiology alternative have been evaluated for perfusion studies. Tc99m appear to be the best balance as TI201 is clinically less accurate and Rubidium82 more expensive. However, in case of shortage these two alternative and relative pro and cons, have to be considered.

References

Pillai MR, Knapp FF Overcoming the 99Tc shortage are options being overlooked? J Nucl Med 2011; 52: 15N-16N.

Campini et al 2008 European Journal Nuclear Medicine molecular imaging 15;S2.